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Abstract 
Outdoor thermal comfort simulation simulations rely on the mean radiant temperature (MRT) 

seen by pedestrians as an important input that remains difficult to compute. Especially for large 

urban models, computing relevant surface temperatures and radiation fluxes that make up the 

MRT is a daunting task in terms of simulation setup and the computational overhead. We 

propose a new algorithm to estimate exterior surface temperatures of building facades, roofs, 

and ground surfaces in an arbitrary urban 3D model. The algorithm discretizes all model surfaces 

and clusters them by material properties and sky and sun exposure to reduce computational 

complexity. The model setup is fully automated, and the algorithm is implemented in the 

popular Rhino3d CAD environment. We demonstrate the accuracy of the algorithm by 

comparing both the resulting external surface temperatures against a high-fidelity simulation 

and the final MRT against real-world measurements. We report an RMSE of 1.8°C and 2.0° 

C, respectively, while reducing simulation times by a factor of ~80. Envisioned applications 

of the algorithm range from rapid microclimate simulations in fast-paced urban design 

processes to large scale urban comfort evaluation of existing cities. 

Keywords 
Comfort, Surface-Temperature, Mean-Radiant-Temperature, Urban, Design, Microclimate 

Introduction 
Cities will be under particular climatic stress due to global warming compared to rural areas. 

(Krayenhoff et al., 2018) have shown that urban expansion has a significant effect on urban heat 

islands under the nonlinear relationship of all parameters relevant to the urban energy balance. 

Rising temperatures in cities will not only increase the energy demand of buildings for space 

cooling (Liu et al., 2019), in many climate zones, it also will worsen the outdoor thermal comfort 

of outdoor spaces (Allegrini et al., 2013) and put additional stress on public health in climates 

that already experience hot summers (Metzger et al., 2010). 
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Two processes with respect to the radiative heat exchange are particularly important for the built 

environments’ contribution to the urban energy balance. First, street canyons and the reflections 

from buildings trap heat from incoming short-wave radiation. At the same time, the sheltering 

effect among the buildings decreases not only the view corridors but also decreases the long-wave 

radiation exchange with the sky. Ultimately, both processes lead to an increase in the ambient 

temperature (Luo et al., 2020) in high-density urban areas. Besides the urban form and density, 

materiality (Coutts et al., 2010), as well as the amount of green and blue infrastructure (Grilo et 

al., 2020), can significantly alter the urban microclimate. For example, high-albedo pavements are 

able to reduce the air temperature by 1.9°C, while surface temperatures decreased by 12°C 

(Santamouris et al., 2012). In another study, (Gagliano et al., 2017) found that green areas, such 

as green roofs, can be used as urban heat island (UHI) mitigation strategies by significantly 

decreasing external surface temperatures of up to 16°C. This shows that urban designers and 

planners have many degrees of freedom to mitigate the negative effects of rising urban 

temperatures using passive methods and informed design interventions such as high-albedo roofs 

and surfaces (Konopacki et al., 1998), vegetation, and evaporative cooling (Grilo et al., 2020). To 

plan and optimize such interventions, fast and easy-to-use tools that allow modelers to assess 

design proposals are necessary. 

Literature review 
While the theory behind urban microclimate modeling is well established, the research community 

usually approaches those problems from different scales ranging from mesoscale to microscale. 

The first controlled urban surface-atmospheric model comparison was carried out by (Grimmond 

et al., 2010). For example, mesoscale models use a combination of Weather Research and 

Forecasting Model (WRF) and Large Eddy Simulation (LES) as a method for atmospheric 

simulations that range from a 10 km cell size to ~50 m cell size (Talbot et al., 2012). However, 

mesoscale models are not able (and are not intended) to resolve detailed building geometries due 

to their limitation in cell size. This also precludes them from being able to assess the pedestrian 

space around the buildings. 

When working with smaller length scales such as a pedestrian environment, models that work on 

the microscale are better suited. In this category, several models have been introduced in the 

literature whose fidelity increased over the years due to the increase in computational resources. 

In 2007, (Matzarakis et al., 2007) introduce a tool called RayMan that was later validated by (Lee 
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& Mayer, 2016), which achieved an RMSE of 12.6°C against measurements in a temperate 

climate. They reported that the missing long-wave radiation exchange emitted by surrounding 

surfaces and the low number of short-wave reflections leads to large errors at low sun angles as 

they are especially important at such angles. At the same time, (Krayenhoff & Voogt, 2007) 

introduce a three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets 

in 3-D (TUF-3D), that incorporates both short-wave and long-wave radiative fluxes and report a 

wall-averaged surface temperature RMSE of 4.0°C. Asawa et al. (2008) followed by implementing 

a design tool capable of long-wave radiation exchange. However, no comparison against 

measurement data was carried out. In 2010, the Solar Long-wave Environmental Irradiance 

Geometry model (SOLWEIG) was introduced (Lindberg et al., 2008) that takes into account short-

and long-wave radiant fluxes for which an RMSE of 4.8°C for the Tmrt is reported. Yang & Li 

(2013) developed a voxel-based Model for Urban Surface Temperature (MUST). Their results 

show an RMSE of about 26 W/m2 during the daytime, while an RMSE of 20 W/m2 is achieved 

during nighttime. For surface temperatures, no RMSEs are reported, but comparisons of measured 

and observed data show differences of up to 5°C in the worst case for an east facade. In 2017, 

(2017) coupled ENVI-met with the TRNSYS environment to estimate the Tmrt for an idealized street 

canyon. Unfortunately, no rigorous error statistic has been provided, and the workflow is not 

feasible for large urban models where potentially hundreds of different canyon configurations 

would need to be set up manually in separate TRNSYS models. In 2018, (Nice et al., 2018) 

developed VTUF-3D, an extension of the previously TUF-3D model, taking into account radiative 

fluxes from vegetation. 

In parallel to those developments, comparisons of those software packages have been made. A 

model comparison against measured data was carried out by Gál & Nice (2020), which compares 

the VTUF-3D approach, ENVI-met, and an approach carried out with Radiance and EnergyPlus. 

They found that ENVI-met systematically underestimated the Tmrt at nighttime and when surfaces 

are shaded. 

Efforts have also been made to integrate the long-wave radiation exchange models into existing 

building energy simulation packages. Here, Evins et al. (2014) and Miller et al. (2015) attempted 

to enhance EnergyPlus’ capabilities by coupling it with the existing microclimate software 

packages ENVI-met and CitySim. Both studies found that the incorporation of long-wave radiation 

exchange has a significant impact on heating and cooling loads, while at the same time reporting 
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a difference in external surface temperatures of 6 and 10°C, respectively. In 2020, Luo et al. (2020) 

drew from those findings and implemented a more detailed long-wave radiation exchange model 

directly into EnergyPlus. By default, EnergyPlus accounts for the long-wave radiative exchange 

to the sky, the ground, and surrounding air, see Figure 1; hence, leaving the long-wave heat 

exchange between the building and other buildings in the vicinity unaccounted for, contrary to 

reports by (Mackey et al., 2017). 

Figure 1: Scheme of outside surface heat balance with (right) and without (left) long-wave radiative 
fluxes between buildings. 

We can write this energy balance (DoE, 2010): 
% % % %�!"#$ + �&'( + �)#*+ − �,# = 0 (1) 

% %Here, �!"#$ is the absorbed direct and diffuse solar (short wavelength) radiation heat flux, �&'( 

%is the exterior surface long-wave radiation flux, �)#*+ is the convective flux exchange with outside 
%air, �,# is the conduction heat flux into the wall. 

% / / / / / /�&'( = ���-*.*�-*. − �"012, + ���",3*�",3 − �"012, + ���451*�451 − �"012, (2) 

Here, ε is the long-wave emittance of the surface, σ is Stefan-Boltzmann constant, Fi are view 

factors between the surfaces, and Tj are the corresponding temperatures. 

In the EnergyPlus 8.8 release, work by Luo et al. (Luo et al., 2020) enabled the estimation of the 

long-wave heat exchange if appropriate view factors from every surface to every other surface 

(many-to-many relationship) if provided by the user. Extending this equation to an arbitrary 

number of surfaces that are in long-wave radiation exchange, we can write: 
/ / / / /% , + � *� , + ⋯ (3) �&'( = εσ/�-*.*�-*. − �"012, + �",3*�",3 − �"012 "! "

/
! 
− �"012 

/ / /+ �""*�"
/
" 
− �"012, + �451*�451 − �"012,1 

To reduce modeling complexity and overhead to enter the many to many view factor relationships, 

modelers often consider building facades as a single large surface. Arguably, this may not be a 
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reasonable assumption as the surface temperatures may differ significantly due to varying 

exposure to solar radiation and air temperature (in the case of skyscrapers). For a downtown urban 

area, this difference in surface temperatures has been shown by (Ghandehari et al., 2018). Hence, 

a meaningful discretization of facades is crucial when striving for locally accurate results. As 

reported by (Yang & Li, 2013), reasonably subdividing all radiating surfaces, the many-to-many 

relationship between the surfaces leads to an O(N2) complexity in the worst case, rendering this 

modeling approach impractical, especially for large scale urban analysis. 

Hypothesis 
These observations motivated the authors to explore automated procedures to substantially 

simplify 3D exterior surface temperature simulations while maintaining high spatial and temporal 

fidelity of the results to capture local effects related to materiality, complex urban shading 

situations, and predominant long-wave radiative exchanges while accurately accounting for 

sheltering and radiation trapping effects observed in urban environments. 

The research in this paper is based on the hypothesis that many surface sub-sets in an urban 

simulation model are exposed to comparable environmental boundary conditions and are made of 

similar materials. Further, we assume that solar exposure and material properties explain the 

largest variance of resulting surface temperatures, surfaces with sufficient similarity in materiality, 

and sun exposure can be clustered and represented with a single representative surface to compute 

the temperature vector. With this approach, urban simulation models with many thousands of small 

surface patches can be reduced to just a few hundred typical surfaces in the simulation without 

sacrificing accuracy as well as spatial and temporal fidelity of the results. 

Methodology 
Based on the hypothesis that calculating exterior surface temperatures can be accelerated and 

simplified without losing temporal and spatial fidelity needed in urban design processes is 

possible, we introduce a novel algorithm called the “Surfer” that uses a global sensitivity analysis 

and K-Means clustering to automatically reduce surface count and related complexity of an 

arbitrary urban surface temperature simulation model. An overview of the key algorithmic steps, 

their inputs and outputs are shown in Figure 2. The algorithm is then validated against simulated 

surface temperature time series (Step1), point in time thermography measurements on-site (Step2), 
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and finally, the predicted mean radiant temperatures are compared with an on-site measured time 

series of a globe thermometer. 

Figure 2: Flow chart of the proposed methodology 

Global sensitivity analysis 
To identify the dominant input parameters in the simulation of exterior surface temperatures in a 

given climate, we conduct an initial global variance-based sensitivity analysis (Saltelli et al., 2010; 

Sobol, 2001) for a set of five surfaces pointing upwards and in all main cardinal directions. We 

sample a parametrically defined two-layer construction with one exterior façade material and one 

inner layer of insulation material that is facing a constant interior temperature at 20°C. The 

construction features outlined in Table 1 are samples according to the Saltelli method using the 

SALib implementation (Herman & Usher, 2017) and are then simulated in EnergyPlus (Crawley 

et al., 2000). To aggregate the hourly temperature time series to a single number sensitivity metric, 

we use the average RMSE between the ambient and the external surface temperature. We 

generated 200 samples with the Saltelli scheme, which resulted in � ⋅ (2 ⋅ � + 2) = 3200 variants 

to simulated, where D is the number of features tested. 

We present qualitative results of the analysis in Figure 3 as the resulting ranking of the input 

parameters as they are used to inform the clustering parameters that determine how model surfaces 

are grouped in the next step of the algorithm. We show parameter sensitivity averages for all 

surface orientations in Figure 3 (left). It shows that surface solar absorptance is by far the most 

significant parameter, explaining 79 % of the variance in the output, suggesting that surface 

orientation and shading patterns by urban context have a significant effect. Figure 3 (right) shows 

feature sensitivity for North facing surfaces that see a significantly smaller amount of solar 

radiation. Here, other construction properties such as conductivity, density, specific heat, and 
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thickness become important, suggesting that north-facing and heavily shaded surfaces in the urban 

environment are susceptible to these features. An exhaustive set of second-order sensitivity results 

is given in Error! Reference source not found. in the appendix. 

Features Bounds 

Conductivity [0.0001, 4.9] 

Density [10, 5000] 

SpecificHeat [101, 5000] 

ThermalAbsorptance [0.05, 0.95] 

Solar Absorptance [0.05, 0.95] 

Thickness [0.02, 0.3] 

InsulationThickness [0.01, 0.2] 

Table 1: Feature bounds of the global SA Table 2: First and total order sensitivity indices– façade averages 

Feature S1 S1_conf ST ST_conf 

Conductivity 0.011 0.046 0.077 0.062 

Density 0.002 0.037 0.059 0.021 

SpecificHeat 0.004 0.045 0.084 0.076 

ThermalAbsorptance 0.073 0.066 0.105 0.025 

SolarAndVisibleAbsorptance 0.624 0.166 0.794 0.166 

Thickness -0.003 0.025 0.018 0.008 

InsulationThickness 0.004 0.009 0.003 0.001 

Figure 3: Qualitative radial plot of parameter sensitivity and interaction averaged across all surfaces (left) and north-facing 
(right) for external surface and dry bulb temperatures. 

Model input 

Geometry 

Algorithm inputs are surfaces or poly-surfaces representing the building facades, roofs, as well as 

pavement, and other ground surfaces. Each surface is paired with construction properties and a 

window to wall ratio. These surfaces are then discretized into smaller surface-patches based on a 

user-defined edge length. The default is set to 3 m that mostly yields quads of approximately 3x3 

dimensions. This setting is assumed throughout the paper. To test and validate the proposed 

algorithm, we model a parking lot framed by a series of larger buildings located at the authors’ 

home institution (Figure 4). The aerial view in Figure 4 also marks the location of the microclimate 

logger that we use for the comparison of measured and simulated MRT in the validation section. 

The model consists of 70 surfaces that describe the roofs, facades, and ground surfaces. Discretized 

into 3x3 quads, this yields approximately 3000 surface patches (Figure 5). 
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Weather data 

The climate data used in the sensitivity analysis and Step1 of the validation is a TMY3 dataset for 

Syracuse, USA (Warm-summer humid continental climate (Dfb), according to the Köppen 

classification (Kottek et al., 2006)). For the validation Step2 and Step3 that compare on-site 

measurements against simulation outputs, we use data measured by an on-site HOBO weather 

station that monitors the microclimate at the marked location in Figure 4. Off-site weather data, 

used as model input, was collected at a nearby, unobstructed weather station operated by the 

Northeast Regional Climate Center, 3 km from the author’s home institution (GFR Weather 

Station, NRCC Cornell). Both on-site and off-site stations record several variables, including 

pressure, dry bulb temperature, relative humidity, global horizontal solar radiation, wind velocity, 

wind direction, and the dew point temperature, see Table 3. The direct/diffuse radiation split was 

calculated according to the methodology by (Reindl et al., 1990). 

MRT measurement 

The on-site station was outfitted with an additional temperature sensor covered with a ping-pong 

ball to measure MRT. While we followed existing best practice guidelines for MRT measurements 

by (De Dear, 1988), who reports that ping pong balls are a suitable means of measuring the mean 

radiant temperature if the wind velocity is below 1.2 m/s, there may exist convective heat losses 

influencing the measurement. Measuring the MRT with globe thermometers introduces a tradeoff 

between the time the thermometer reaches the radiative equilibrium (the response time) and the 

error due to convective heat transfer losses (accuracy). A small globe would reach the equilibrium 

faster through an increased convective heat transfer coefficient, thereby increasing the effect of 

separation of air temperature form the globe temperature and increasing the influence by variations 

in air velocity. This renders the globe thermometer less capable to resolve radiation inputs 

accurately. (Thorsson et al., 2007). However, Nikolopoulou et al. (n.d.) suggest the ping pong balls 

are a good choice for globe thermometers with a response time smaller than 5 min due to their 

robustness and their matte surface characteristics. Besides that, Thorsson et al. (2007) suggest a 

measurement aggregation to a 5 min mean value (10 minutes show diminishing returns) to avoid 

scattering of values due to rapid changes in radiation fluxes which was followed in our approach. 

DeDear (1988) reported accuracies ranging from -1.2 K to +0.8 K for ping pong globe 

thermometers depending on the environmental conditions. 
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Table 3: Measured environmental variables and their resolution and accuracy. 

Variable Unit Instrument Resolution Accuracy 

Dry Bulb °C HOBO <0.03°C < ±0.2°C from 0° to 50°C 
Temperature S-TMB-M0xx from 0° to 50°C 
Relative - HOBO 0.1% RH +/- 2.5% from 10% to 90% RH 
Humidity S-THB-M002 , to a maximum of +/-

3.5% including hysteresis at 25°C; 
below 10% and above 90% ±5% 

Wind m/s HOBO 0.4 m/s ±0.8 m/s or ±4% of reading, 
velocity S-WCG-M003 whichever is greater 
Wind deg HOBO 1 deg 0.2 to 3 m/s: ±4 degrees 
direction S-WCG-M003 >3 m/s: ±2 degrees
Globe °C HOBO S-TMB-M0xx; <0.03°C from < ±0.2°C from 0° to 50°C 
temperature 
Global W/m2 

white ping pong ball 
HOBO 

0° to 50°C 
1.25 W/m2 ±10 W/m2 or ±5%, whichever is 

Solar S-LIB-M003 greater in sunlight; Additional 
Radiation temperature-induced error ±0.38 

W/m2 /°C from 25°C 
Surface °C FLIR Imager E6390 80x60IR 45°x34° ±2°C (±3.6°F) or ±2% of reading, 
Temperature FOV resolution, 

<0.15°C/150mK 
for ambient temperature 10°C to 
35°C (50°F to 95°F) and object 

from -20°C to 250°C temperature above 0°C (32°F) 

Material properties 

The constructions used for the study area are (1) a 5 cm asphalt (Conductance: 0.75 [W/m K], 

Density: 2350 [kg/m3], Specific Heat: 920 [J/kg K]) with a 20cm generic concrete underlay used 

for the roofs and pavement as well as (2) a 20cm yellow brick façade (Conductance: 0.56 [W/m 

K], Density: 1200 [kg/m3], Specific Heat: 1000 [J/kg K]) with interior insulation. Solar 

absorptance for both exterior material layers is estimated by using a CIBSE color chart to 

determine the visible reflectance of the materials. We assume a solar absorptance of 0.8 for the 

asphalt and 0.7 for the yellow brick façade. This is also in good agreement with other data tables 

that provide an order of magnitude ranges for solar absorptance of different materials (Engineering 

ToolBox, 2009). The glazing is assumed to be a generic double-pane clear glass with a U-Value 

of 2.76 [W/m2 K], SHGC of 0.76, and a Tvis of 0.81. 
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 20 m 

Figure 4: Aerial view of the case study area showing a parking Figure 5: 3D representation of the simplified CAD model showing the 
lot framed by larger buildings located at the authors’ home discretization of building and ground surfaces into 3x3 m patches. 

institution. 

Clustering 
The surface-patches that are generated by the model discretization step described above are then 

analyzed and clustered by their similarity using K-Means (MacQueen, 1967). Based on the 

findings from the initial sensitivity analysis, we implement clustering using exterior surface solar 

absorptance (direct sun), thermal absorptance (long-wave), conductivity, density, and specific heat 

as distinguishing parameters. Further, surface orientation as a three-dimensional vector and 

overshadowing patterns are included in the clustering procedure. The overshadowing patterns for 

each surface-patch are summarized by eight elevation angles forming a virtual horizon for each 

patch. These angles are computed using ray-model intersection tests in user-defined degree steps 

(five degrees is the default) for azimuth and elevation at each surface patch centroid. The 

intersection test results are then used to determine the average horizon height stored in an array of 

eight elevation angles. Figure 6 (left) illustrates a virtual horizon that is used as an input for the 

clustering, whereas Figure 7 shows the mesh surfaces colored by their cluster group ID. 

It is well known that the K-Means algorithm fails for input data in spherical clusters. To prevent 

the occurrence of this weakness, we are forcing each construction material into a cluster, thereby 

essentially running the algorithm twice. 

10 



  

  
         

 
                 

Figure 6: Virtual horizon for a shading geometry shoebox highlighted. 

Figure 7: Surfaces binned into clusters with the K-Means algorithm with their enumerated cluster centroids (K = 80). 
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View Factors 
View factors between the different surface patches are required to model the long-wave radiative 

exchange between all simulated surfaces. We compute these view factors according to Equation 4 

provided below (Hardy & Steeb, 2008): 
�6 cos �5 cos �6 (4) 

�56 = �56 ��7 

We cast rays from various points on patch j to patch i. The percentage of the rays that make it from 

patch j to patch i are recorded as Vij. For small surfaces, a single ray is sufficient and serves as an 

occlusion test. We have Vij = Vji. Let r be the distance between the centers of the patches, and then 

we approximate the view factor by Equation (4). To further reduce computational overhead, the 

user can specify a cut-off value (>0.0001 is the default) to skip the occlusion test for surface pairs 

where the resulting view factor would be insignificant. 

It is important to note that we compute the view factor relationships between all small surface 

patches. For large models, storing this information can lead to significant memory use (Yang & 

Li, 2013). We circumvent this problem since we can immediately aggregate the patch-to-patch 

view factors into cluster-to-cluster view relationships. This significantly reduces the amount of 

view factor pairs that need to be stored in memory. 

Surface Temperature Simulation 
Once clustering and view factor computation are complete, the surfer algorithm can export the 

representative surface patches (cluster centroid) and the aggregated view factor relationships 

between the cluster centroids. To compute the cluster-centroid surface temperature time series, we 

implement the surface temperature simulation using EnergyPlus; the clustering method itself is, 

however, simulation-tool-agnostic and could also utilize other simulation software packages like 

TRNSYS (Beckman et al., 1994) or simpler models like the CIBSE admittance method (Davies, 

1994). 

To prepare the model for EnergyPlus, we place a shoebox (Dogan & Reinhart, 2017) at the location 

of each cluster centroid, see Figure 8. The shoebox assumes the footprint of the surface patch 

(3x3m). A small window surface is added, and the opaque and glazing construction is assigned. 

An interior boundary condition of 20°C is assigned to the surfaces. To accurately model the 

shading effect of the urban context, all original model surfaces are added as shaders. Exterior 

surface long-wave radiative exchange is configured with the “surrounding surfaces” object and an 

12 



  

      

        

            

   

         

  

 
            

  
         

         

          

           

         

        

     

          

      

Energy Management System (EMS) script to synchronize simulated surface temperatures 

internally. In the current implementation of EnergyPlus, this is only possible with a one-time-step 

lag (Luo et al., 2020). Finally, the entire model is exported as a single IDF file (Input File) and 

simulated with EnergyPlus through the Rhino and Grasshopper plugin ClimateStudio (Solemma 

LLC, 2019). The results obtained are surface temperature time series for the opaque construction 

and the glazing surface for each cluster centroid. 

Figure 8: Sampled surfaces for which radiative exchange is simulated for K = 40. 

Mean Radiant Temperature 
The mean radiant temperature (MRT) is an important input for thermo-physiological comfort 

indexes such as physiological equivalent temperature PET (Mayer & Höppe, 1987) or universal 

thermal climate index UTCI (Blazejczyk et al., 2013). It is defined as the view factor (F) weighted 

mean temperature of all the surfaces surrounding a body. It is, therefore, a desirable result that can 

be calculated based on the surface temperatures predicted with the Surfer algorithm. The MRT can 

be predicted (Thorsson et al., 2007) using three major components: (1) the surface temperatures of 

all surrounding building and ground surfaces �"012,6, (2) the sky temperature �",3, and (3) the solar 

radiation gain that acts on a person in direct sunlight. These three components are combined to 

compute the MRT for every hour h and every probing location i according to Equation (5): 
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* 

���9,5 = �",3,9 ⋅ �",3,5 + C(�"012,9,6 ⋅ �"012,5:6) + Δ���9,5 (5) 
6;< 

(1) Surrounding surface temperatures 

The effect of the surface temperatures surrounding a person’s location requires to compute a set 

of view factors from the probing point (person’s location or, in our case, the location of the 

microclimate logger as indicated Figure 4) to all surface-patches in the model using Equation 4. 

The resulting view factors are then aggregated within each cluster, and the surface temperature 

that is modeled for each cluster centroid is extracted. 

(2) Sky temperature 

Similarly, for each probing point, a sky view factor �",3,5 can be approximated based on the sum 

of all surface view factors according to: 
* 

�",3,5 = 1 − C(�"012,5:6) 
6;< 

The sky temperature �",3 can be extracted as a simulation result from any of the surface 

temperature simulations conducted in EnergyPlus. If necessary, the sky temperature can also be 

calculated directly using sky emissivity and the horizontal infrared radiation intensity as defined 

in the EnergyPlus Engineering Reference (DoE, 2010). 

(3) Solar gain MRT offset 

The solar radiation gain can be described as a temperature offset Δ���." that is calculated using 

the Effective Radiant Field (ERF) (Arens et al., 2015), which we adapted for an outdoor setting 

and from which we derived Δ���.". For this, we assume a “standing” posture which refers to a 

value of 0.725 for feff, a total solar transmittance tsol of 1, and the fraction exposed to the sun to be 

0.5. 

�.522 = �=22 ⋅ �"++ ⋅ 0.5 ⋅ �"#$ ⋅ �.522 �.51=)> = �? ⋅ �"#$ ⋅ �@=" ⋅ �.51 

�"#$41 = �.522 + �.51=)> ��� = �"#$41 ⋅ 
��4@" (6) 
��4@" 
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��� 
Δ��� = ℎ� ⋅ �=22 

To compute the irradiance that is used as an input for the ERF, we implemented a Radiance-based 

Two-Phase (DDS) method (Subramaniam, 2017). The DDS approach was chosen because it 

provides a better spatial resolution of the direct component. The Two-Phase DDS method is a 

daylight-coefficient-based simulation with an all-weather dynamic sky model (Perez Sky model). 

Instead of approximating the position and shape of the sun with few sky patches, we used 577 sun 

patches for the direct and diffuse simulation and 2305 direct sun patches. The Radiance simulations 

use three ambient bounces and 5000 ambient divisions. The illuminance is a linear combination of 

(1) an annual daylight coefficient simulation, (2) annual direct-only daylight coefficients, and (3) 

an annual sun-coefficients simulation (Bourgeois et al., 2008): 

� = �.) ⋅ � − �.). ⋅ �. + �"0* ⋅ �"0* 

where CAB and � denote the daylight coefficient matrix and the sky vector, CABA and SA denote the 

direct-sky coefficient and the direct sky matrix, and CCDE and SCDE denote the direct-sun coefficient 

and the sun matrix, respectively (Subramaniam, 2017). 

Validation 
To validate the proposed simulation approach, we compare the simulated results in three steps: 

(1) We assess the influence of K (number of clusters) on the average surface temperature time 

series RMSE between all surfaces in a cluster, compared to its cluster centroid. We do this to 

introduce a measure for how much the cluster centroids differ from the simulated ground truth. 

(2) We compare a predicted surface temperature against on-site observations using a thermal 

camera. (3) In a third step, we compare a predicted MRT time series against microclimatic 

measurements by an Onset HOBO sensor at the case study site; see Figure 4 for the measurement 

location. The 12-bit temperature sensor used is specified with an accuracy of < ±0.2°C from 0° to 

50°C and a resolution of <0.03°C from 0° to 50°C. 

Step 1: Surface temperature: Cluster result vs. simulation of all surfaces via Energy Plus 

We simulate all surface patches individually and obtain surface temperature time series using 

EnergyPlus. In this simulation, we neglect the patch-to-patch long-wave radiation exchange. This 

dataset serves as ground truth to determine the cluster accuracy and computational overhead of our 

new method. We then use the proposed Surfer method to estimate surface temperature time series 

with different K-values ranging from 2 – 100 with increments of 2. We use the Elbow method as 
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a heuristic to choose a K-value, after which diminishing returns are not worth the additional 

computational cost (Thorndike, 1953). 

Step 2: Surface temperature: Cluster result vs. thermography images 

For K = 40, we calculate the surface temperatures of the facades and ground surfaces and compare 

them against thermography images taken on-site for one point in time and multiple view directions. 

The thermography images were taken with a FLIR E4 MSX Imager. The imager was calibrated 

using the onboard library of materials for the correct emissivity of the measured material. 

Dimensions were taken to determine the distance from the imager to the measured area and 

inputted into the imager as well. Thermal imagery results were compared with readings from an 

infrared thermometer to determine if they matched. Simulation results are reported with and 

without patch-to-patch longwave radiation exchange to verify the importance of this phenomenon. 

Step 3: Mean radiant temperature: Cluster result vs. real-world measurement 

For K = 40, we calculate hourly mean radiant temperature time series and compare them against 

real-world, on-site measurements of globe temperatures. The weather data input for the Surfer 

algorithm is a custom EPW file that was created from data collected at the off-site station. We use 

a window-to-wall ratio of 20 % to derive the mean radiant temperature from the surrounding 

surfaces at the measurement location, see Figure 4. To calculate the MRT considering convection 

effects, we use the equation (7 suggested by (Thorsson et al., 2007). 

<.7K
/ 1.1 ⋅ 10H ⋅ �4<.J 

�F(G = T*�- + 273.15, + ⋅ *�- − �4,V − 273.15 (7) 
ε ⋅ �<./ 

Results 
Step 1: Surface temperature: Cluster result vs. simulation of all surfaces via EnergyPlus 

Figure 9 shows the RMSE errors between the cluster centroids and all surfaces in their respective 

cluster for window and façade temperatures over the number of clusters without patch-to-patch 

long-wave interactions. The figure illustrates that the façade RMSEs decrease non-linearly. They 

decrease quickly for 0 < K < 8, less quickly for 8 < K < 40, and we have diminishing returns for 

K > 40. The algorithm predicts surface temperatures with reasonable errors for K > 40, which led 

the authors to determine K = 40 as a reasonable number of clusters for this study. Figure 9 

illustrates a worst-case error-band of an RMSE of 2°C for K ≥ 40 for both facades and windows. 
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Figure 9: RMSE errors between cluster centroids and their cluster members for window and façade temperatures over the 
number of clusters without patch-to-patch long-wave interactions. 

Figure 10 shows the average simulation time for short wave radiation-only and patch-to-patch 

long-wave simulation variants. Extrapolating the observed simulation times from Figure 10 for 

1574 clusters (most accurate simulation possible) yields a hypothetical simulation around 85 min 

for short-wave & long-wave and simulation time of 50 min for short-wave-only. 

Figure 10: Simulation time with respect to the number of clusters for the K-Means algorithm. 

Figure 11 shows the monthly diurnal average of external façade temperatures comparing the short-

wave-only and the patch-to-patch long-wave radiation exchange approach implemented by our 

method. As expected, external surface temperatures differ most significantly from the dry bulb 

temperature during the summer months. For the external façade temperatures, the new approach 

shows differences in external temperatures of about 6°C in the summer months, whereas the 

difference during the winter months is around 3°C. 
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         Figure 11: Monthly diurnal temperature averages of external façade temperatures. 
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(a) 

(b) 

(c) 

Figure 12: (a) Timeseries of three selected clusters oriented horizontally (teal), (b) vertical-north, showing negligible errors 
due to homogeneous cluster (magenta), and vertical-south (red). The dashed and dotted lines denote the mesh faces with the 

smallest and largest annual hourly RMSE within that cluster. All grey lines represent the remaining mesh faces in the 
respective cluster. 
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Figure 13: Selection of three clusters: horizontal (mesh face 68 - teal), vertical-north (mesh face 16 - magenta), and vertical-south 

(mesh face 28 - red) oriented. “C” denotes the centroid for each cluster. The denoted mesh faces illustrate the mesh faces with the 

smallest/largest annual hourly RMSE with respect to the respective cluster centroid. 

In Figure 13, we illustrate three clusters with their cluster centroid and all mesh patches the cluster 

represents. We further show the patches with the smallest and largest annual hourly RMSE for 

their respective cluster centroid. The teal cluster is oriented horizontally, whereas the magenta and 

red cluster are vertical surfaces pointing North and South, respectively. Cross-referencing their 

location with their hourly time series in Figure 12, we see that the largest deviations (over and 

underprediction) exist for the cluster centroid for horizontal surfaces depending on whether they 

are directly exposed to the sun (Figure 12 (a)). Figure 12 (b) reveals that in-cluster RMSEs are 

negligible to the degree that all data points are perfectly overlapping for north-facing mesh faces. 

Figure 12 (c) shows smaller RMSEs compared to the horizontally oriented mesh faces; however, 

both the mesh face with the minimum and maximum RMSE overpredict the surface temperature. 

Step 2: Surface temperature: Cluster result vs. thermography images 

Figure 14 shows on-site thermography images in three directions around the on-site station. Table 

4 contrasts the measured data with simulation results with and without long-wave radiation. The 

measurements, generally, are in good agreement with the simulation results when the longwave 
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radiative exchange is considered. The results for West (a) Bx1, Bx2, and Bx3 in Table 4 are 

particularly noteworthy. The regions West (a) Bx2 and Bx3 show the highly localized effect of 

long-wave radiation exchange. 

(a) View facing West (b) View facing South (c) View facing North 

Figure 14: On-Site Thermography for three view directions (a) West, (b) South, (c) North. Images were taken on 9/19/2020 at 
1:15 pm from the viewpoint of the microclimate station location marked in Figure 4. 

Table 4: Surface temperatures measured using a FLIR thermal camera for 9/19/2020 at 1:15 pm. These readings are compared 
to the two simulation approaches with and without longwave radiation exchange. 

Location Meas. Av. Meas. Range Sim. (no longwave) Sim. (with longwave) 

West (a) Bx1 Window 21.0 °C 17.8 - 26.1 °C 21.0 21.0 
West (a) Bx2 Brick 32.0 °C 28.2 - 33.3 °C 23.8 31.2 
West (a) Bx3 Brick 30.8 °C 29.5 – 31.9 °C 23.4 29.4 
West (a) Bx4 Brick 44.5 °C 41.0 -47.1 °C 37.1 43.2 
West (a) Bx5 Ground 55.8 °C 52.1 – 60.7 °C 47.7 55.9 
South (b) Bx1 Façade 11.7 °C 9.8 – 16.5 °C 20.7 23.9 
South (b) Bx2 Façade 23.9 °C 19.0 - 26.6 °C 20.8 24.0 
South (b) Bx3 Ground 46.3°C 21.0- 60.7 °C 47.5 57.1 
North (c) Bx1 Brick 45.5 °C 41.3 – 50.0 °C 37.1 43.2 
North (c) Bx2 Window 44.6 °C 35.9 – 50.1 °C 25.0 25.0 
North (c) Bx3 Ground 55.8 °C 48.9 – 60.2 °C 47.7 55.9 

Step 3: Mean radiant temperature: Cluster result vs. real-world measurement 

Figure 15 compares the simulated MRT against the calculated MRT at the author’s home 

institution for a week in October 2019. During this period, we observe an RMSE of 2.04°C for 

cloudless days and an RMSE of 2.23°C for days with sky cover > 0.1. 
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Figure 15: Measured Globe Temperature, calculated MRT (equation X), simulated MRT, and measured dry-bulb temperature 
(Ta) for a week in 2019. 

Discussion 
This research shows that it is possible to cluster external surfaces in an urban environment to speed 

up outdoor thermal comfort simulations while preserving a reasonable degree of accuracy and high 

spatial resolution. This effort allows for simulating long-wave radiation exchange between 

external building surfaces, which is especially important in summer months where simulation with 

and without longwave radiative exchange deviates most (see Figure 11). The computational 

expense of a many-to-many long-wave radiation exchange calculation would conventionally grow 

with O(N2) and thus is a computationally costly calculation for large scale urban models with many 

surface patches. Figure 9 shows that the K-Means algorithm with 40 clusters achieves an average 

RMSE of < 1°C for both external windows and façade temperatures, while Figure 10 shows a 

decrease in a simulation time of ~98% for the same number of clusters. In Figure 12, we sampled 

three clusters with different orientations and plotted the time series of the mesh series with the 

smallest and largest RMSE against their cluster centroids. The results confirm what the orientation 

and location of the clusters would suggest; that is, if the cluster is comprised of mesh faces that 

see a different amount of radiation during the day (teal cluster), the intra-cluster RMSEs are larger 

compared to a cluster that sees very similar exposure to radiation (magenta cluster). 

This suggests that most RMSEs can be attributed to differences in when and how strong the solar 

radiation impulse is acting on a surface and, if desired, an even greater accuracy could be achieved 

by using a finer geometric resolution of the virtual horizon (Figure 6) as clustering input. We 
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would further like to acknowledge prevalent uncertainties in our model and its validation 

procedure that can help further explain the deviations observed in this study. While we followed 

existing best practice guidelines for mean radiant temperature measurements by (De Dear, 1988), 

who reports that ping pong balls are a suitable means of measuring the mean radiant temperature 

if the wind velocity is below 1.2 m/s, there may exist convective heat losses influencing the 

measurement. However, the measured wind velocity in Figure 15 does not suggest a significant 

error contribution. 

When conducting the sensitivity analysis as a precursor to establish a feature set for the K-Means 

clustering algorithm, we only considered opaque surfaces. This decision was made because the 

window-to-wall ratio (WWR) for the building geometry in question was about 20 %. As the U-

value for windows is generally much higher than it is for walls, the feature set for transparent 

surfaces will likely be different from the feature set for opaque surfaces. However, given the small 

WWR and the low RMSEs, we regarded the feature set as appropriate for this study. Moreover, a 

cluster number of K = 40 might not be ideal when simulating larger urban areas than the study 

assessed here. Further studies are warranted that assess both alternative clustering approaches 

(such as hierarchical clustering) for this purpose and to analyze whether the number of clusters 

generalizes for any size/complexity of input geometries. 

This workflow stands in contrast to efforts made by the authors of tools such as ENVI-met or 

VTUF3D in several ways. First, its integration into the CAD modeling environment in Rhino and 

the use of mesh-based surface discretization allows precise and detailed input geometry 

specification where surfaces may have arbitrary orientation and shape. ENVI-met and VTUF3D 

rely on a 3-D cartesian grid discretization that confines the geometry representation to a voxel 

space. While the voxels are not problematic per se, they limit the user’s ability to counteract the 

N2 complexity issue as the geometry will be forced to be simulated with identical resolution 

everywhere in the simulation domain. While we did not take advantage of the possibility of 

different sizes for mesh faces in this study, it would be easy to do so for larger models, thereby 

influencing the accuracy and simulation time even more favorably. Besides, the workflow 

presented has been implemented in Grasshopper, an algorithmic modeling environment for the 

widely used CAD software Rhinoceros that allows for modeling according to the principles of 

systems engineering. 

23 



  

      

        

     

        

      

          

       

        

       

   

        

       

           

         

         

          

            

     

        

       

 

      

         

      

           

      

        

            

            

    

This modular approach can easily be extended to consider long-wave radiation exchange with and 

between arbitrary patches with associated temperatures such as surfaces with vegetation, trees, and 

water features in the urban environment by simply adding an additional clustering layer that can 

group those surfaces by the similarity of their sensitive features. These surfaces could then be 

simulated by other models in EnergyPlus, such as the GreenRoofModel (Sailor, 2008), or with an 

entirely different tool that just provides corresponding annual surface temperatures that can be 

passed into to the Surfer algorithm. A workflow to produce leaf temperatures (Duursma & Medlyn, 

2012) has been developed to streamline the modeling of the mean radiant temperatures from 

vegetative surfaces (Chokhachian & Hiller, 2020). Further studies are warranted to establish this 

link, as this is important for areas in which vegetation may not be neglected. 

Further, the Surfer algorithm addresses a gap in software capabilities reported by Lee and Mayer 

(2016). They noted that their existing software considerably underestimated the Tmrt at low sun 

angles and suggested that not only multiple short-wave multiple reflections but also the long-wave 

radiant flux density emitted from the surrounding surfaces are crucial to estimate accurate Tmrt, 

especially at low sun angles. The results in Table 4, particularly the discrepancies between results 

with and without long-wave radiation for the regions West (a) Bx2 and Bx3, confirm the claims 

made by Lee and Mayer (2016). We were able to show that the thermography measurements are 

in very good agreement with the simulation results of our method – even for highly localized 

phenomena. Hence, we believe the Surfer algorithm is capable of addressing the shortcoming 

identified by Lee and Mayer (2016), paired with a feasible amount of setup and computational 

effort. 

In conclusion, it is worth noting that all previously developed surface temperature modeling 

schemas can benefit from the workflow introduced in this study. In Figure 2, we showed the limited 

inputs necessary for the framework to work, namely the building geometry and the associated 

materials, the number of clusters, and annual weather data in the EPW file format. As those inputs 

are common among other simulation engines, the Surfer workflow is poised to be integrated into 

existing workflows, such as estimating the impact of urban heat islands or mapping outdoor 

thermal comfort in urban areas. Although this work focuses on a case study of only a few buildings, 

our findings suggest that the simulation time for mean radiant temperature predictions at the urban 

scale can be significantly reduced while preserving model accuracy. 
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Conclusion 
We introduce the Surfer algorithm, a fast simulation workflow to predict surface temperatures and 

mean radiant temperatures in large urban models. Estimating accurate mean radiant temperatures 

in urban areas requires an accurate estimation of the short- and long-wave radiative exchange 

between the sky and all participating building surfaces. When considering the long-wave radiation 

exchange, such efforts become computationally intractable for large urban areas due to their O(N2) 

complexity. Our algorithm discretizes all model surfaces and clusters them by material properties 

and sky and sun exposure to reduce computational complexity. We further take advantage of the 

K-Means clustering algorithm that is being trained on a novel set of features, including a virtual 

horizon for every participating mesh surface. We report a worst-case RMSE of 2°C for external 

surface temperatures for k ≥ 40, comparing a high-fidelity simulation against the clustered 

approach while increasing the simulation time by a factor of 80, hence confirming our hypotheses 

stated above. Furthermore, a comparison against a real-world measurement at the authors’ home 

institution shows that the clustered result is in good agreement with the real-world data, reporting 

an RMSE of 2.7 °C for seven days. The modular approach, the implementation into a visual 

programming environment called Grasshopper, and the tight integration with existing modeling 

frameworks such as EnergyPlus, and Radiance allows the Surfer algorithm to be seamlessly 

integrated into existing workflows that aim to estimate the mean radiant temperature in urban 

areas. 
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 Variable  Description  Units 

 q′′LWR       Exterior surface long-wave radiative heat flux  W/m2 

	q′′conv      Exterior surface convective heat flux 	W/m2 

	q′′cond      Exterior surface conduction heat flux 	W/m2 

	q′′αsol          Exterior absorbed direct and diffuse solar (short-wave) radiation heat flux 	W/m2 

	hr         Linearized radiative heat transfer coefficient to air temperature 	W/m2*K 

 tvis   Visible transmittance  -

	SHGC     Solar heat gain coefficient 	-

	feff     Posture: standing, sitting, supine 	-

	Tsurf     Surface Outside face temperatures 	K 

	Tair    Outside air temperature 	K 

	Tgnd     Environmental ground surface temperature 	K 

	Tsky   Sky temperature 	K 

	Fgnd       view factor of wall surface to ground surface 	-

	Fsky       View factor of wall surface to sky 	-

	tsol   Total solar transmittance  	-

	fbes      Fraction of body exposed to sun 	-

	K     Number of K-Means clusters 	-

	Fij        View factor from one mesh surface to another 	-

	Tmrt    Mean radiant temperature 	K 

	S1    First-order global sensitivity index 	-

	S2    Second-order global sensitivity index 	-

	ST    Total-order global sensitivity index 	-

 Fair       View factor of wall surface to air  -

 ε    Surface long-wave emissivity  -

 σ   Stefan-Boltzmann constant  W/m2*K4 

 

  

Nomenclature 

26 



  

 
   

      
 

   
  

 
    

    
 

 
     

 
 

     

 
     

 
     

 
   

      
 

  
 

        

 
      

 
 

    
  

 
     

    
    

 

References 
Allegrini, J., Kämpf, J., Dorer, V., & Carmeliet, J. (2013). MODELLING THE URBAN 

MICROCLIMATE AND ITS INFLUENCE ON BUILDING ENERGY DEMANDS OF AN 
URBAN NEIGHBOURHOOD. 6. 

Arens, E., Hoyt, T., Zhou, X., Huang, L., Zhang, H., & Schiavon, S. (2015). Modeling the comfort 
effects of short-wave solar radiation indoors. Building and Environment, 88, 3–9. 
https://doi.org/10.1016/j.buildenv.2014.09.004 

Asawa, T., Hoyano, A., & Nakaohkubo, K. (2008). Thermal design tool for outdoor spaces based 
on heat balance simulation using a 3D-CAD system. Building and Environment, 43(12), 
2112–2123. https://doi.org/10.1016/j.buildenv.2007.12.007 

Beckman, W. A., Broman, L., Fiksel, A., Klein, S. A., Lindberg, E., Schuler, M., & Thornton, J. 
(1994). TRNSYS The most complete solar energy system modeling and simulation 
software. Renewable Energy, 5(1–4), 486–488. 

Blazejczyk, K., Jendritzky, G., Broede, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., & 
Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). 
https://repository.lboro.ac.uk/articles/An_introduction_to_the_Universal_Thermal_Clima 
te_Index_UTCI_/9347024 

Bourgeois, D., Reinhart, C., & Ward, G. (2008). Standard daylight coefficient model for dynamic 
daylighting simulations. Building Research & Information, 36(1), 68–82. 

Chokhachian, A., & Hiller, M. (2020). PANDO: Parametric Tool for Simulating Soil-Plant-
Atmosphere of Tree Canopies in Grasshopper. 8. 

Coutts, A., Beringer, J., & Tapper, N. (2010). Changing Urban Climate and CO2 Emissions: 
Implications for the Development of Policies for Sustainable Cities. Urban Policy and 
Research, 28(1), 27–47. https://doi.org/10.1080/08111140903437716 

Crawley, D. B., Pedersen, C. O., Lawrie, L. K., & Winkelmann, F. C. (2000). EnergyPlus: Energy 
simulation program. ASHRAE Journal, 42(4), 49. 

Davies, M. G. (1994). The thermal response of an enclosure to periodic excitation: The CIBSE 
approach. Building and Environment, 29(2), 217–235. https://doi.org/10.1016/0360-
1323(94)90072-8 

De Dear, R. (1988). Ping-pong globe thermometers for mean radiant temperatures. H and V 
Engineer, 60(681), 10–11. 

DoE, U. (2010). Energyplus engineering reference. The Reference to Energyplus Calculations. 
Dogan, T., & Reinhart, C. (2017). Shoeboxer: An algorithm for abstracted rapid multi-zone urban 

building energy model generation and simulation. Energy and Buildings, 140, 140–153. 
https://doi.org/10.1016/j.enbuild.2017.01.030 

Duursma, R. A., & Medlyn, B. E. (2012). MAESPA: A model to study interactions between water 
limitation, environmental drivers and vegetation function at tree and stand levels, with an 
example application to [CO2] × drought interactions. Geoscientific Model Development, 
5(4), 919–940. https://doi.org/10.5194/gmd-5-919-2012 

27 

https://doi.org/10.5194/gmd-5-919-2012
https://doi.org/10.1016/j.enbuild.2017.01.030
https://doi.org/10.1016/0360
https://doi.org/10.1080/08111140903437716
https://repository.lboro.ac.uk/articles/An_introduction_to_the_Universal_Thermal_Clima
https://doi.org/10.1016/j.buildenv.2007.12.007
https://doi.org/10.1016/j.buildenv.2014.09.004


  

 
 

    
 

      
  

       
  

 
    

 
    

         
 

     
        

 

    
        

 
     

 
   

 
     

 
  

 
  

    
 

     
   

 
     

    
 

Engineering ToolBox. (2009). Absorbed Solar Radiation. 
https://www.engineeringtoolbox.com/solar-radiation-absorbed-materials-d_1568.html 

Evins, R., Dorer, V., & Carmeliet, J. (2014). Simulating external longwave radiation exchange for 
buildings. Energy and Buildings, 75, 472–482. 

Gagliano, A., Detommaso, M., & Nocera, F. (2017). Assessment of the Green Roofs Thermal 
Dynamic Behavior for Increasing the Building Energy Efficiencies. In J. Littlewood, C. 
Spataru, R. J. Howlett, & L. C. Jain (Eds.), Smart Energy Control Systems for Sustainable 
Buildings (Vol. 67, pp. 37–59). Springer International Publishing. 
https://doi.org/10.1007/978-3-319-52076-6_2 

Gál, C. V., & Nice, K. A. (2020). MEAN RADIANT TEMPERATURE MODELING OUTDOORS: 
A COMPARISON OF THREE APPROACHES. 10. 

Ghandehari, M., Emig, T., & Aghamohamadnia, M. (2018). Surface temperatures in New York 
City: Geospatial data enables the accurate prediction of radiative heat transfer. Scientific 
Reports, 8(1), 1–10. 

Grilo, F., Pinho, P., Aleixo, C., Catita, C., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., 
McPhearson, T., & Branquinho, C. (2020). Using green to cool the grey: Modelling the 
cooling effect of green spaces with a high spatial resolution. Science of The Total 
Environment, 724, 138182. https://doi.org/10.1016/j.scitotenv.2020.138182 

Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J.-J., Belcher, S. E., 
Bohnenstengel, S. I., Calmet, I., Chen, F., Dandou, A., Fortuniak, K., Gouvea, M. L., 
Hamdi, R., Hendry, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E. S., Lee, S.-
H., … Zhang, N. (2010). The International Urban Energy Balance Models Comparison 
Project: First Results from Phase 1. Journal of Applied Meteorology and Climatology, 
49(6), 1268–1292. https://doi.org/10.1175/2010JAMC2354.1 

Hardy, A., & Steeb, W.-H. (2008). Mathematical tools in computer graphics with C# 
implementations. World Scientific Publishing Company. 

Herman, J., & Usher, W. (2017). SALib: An open-source python library for sensitivity analysis. 
The Journal of Open Source Software, 2(9). https://doi.org/10.21105/joss.00097 

Konopacki, S., Gartland, L., Akbari, H., & Rainer, L. (1998). Demonstration of energy savings of 
cool roofs. https://doi.org/10.2172/296885 

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger 
climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. 

Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V., & Georgescu, M. (2018). Diurnal 
interaction between urban expansion, climate change and adaptation in US cities. Nature 
Climate Change, 8(12), 1097–1103. https://doi.org/10.1038/s41558-018-0320-9 

Krayenhoff, E. S., & Voogt, J. A. (2007). A microscale three-dimensional urban energy balance 
model for studying surface temperatures. Boundary-Layer Meteorology, 123(3), 433–461. 
https://doi.org/10.1007/s10546-006-9153-6 

Lee, H., & Mayer, H. (2016). Validation of the mean radiant temperature simulated by the RayMan 
software in urban environments. International Journal of Biometeorology, 60(11), 1775– 
1785. https://doi.org/10.1007/s00484-016-1166-3 

28 

https://doi.org/10.1007/s00484-016-1166-3
https://doi.org/10.1007/s10546-006-9153-6
https://doi.org/10.1038/s41558-018-0320-9
https://doi.org/10.2172/296885
https://doi.org/10.21105/joss.00097
https://doi.org/10.1175/2010JAMC2354.1
https://doi.org/10.1016/j.scitotenv.2020.138182
https://doi.org/10.1007/978-3-319-52076-6_2
https://www.engineeringtoolbox.com/solar-radiation-absorbed-materials-d_1568.html


  

    
      

 
  

    
 

    
 

  
      

 
    

       
 

   
    

 
    

 
     

  
   

     
       

 
    

     
 

 
  

 
    

 
   

 
   

 
  

     

Lindberg, F., Holmer, B., & Thorsson, S. (2008). SOLWEIG 1.0–Modelling spatial variations of 
3D radiant fluxes and mean radiant temperature in complex urban settings. International 
Journal of Biometeorology, 52(7), 697–713. 

Liu, J., Heidarinejad, M., Nikkho, S. K., Mattise, N. W., & Srebric, J. (2019). Quantifying Impacts 
of Urban Microclimate on a Building Energy Consumption—A Case Study. Sustainability, 
11(18), 4921. https://doi.org/10.3390/su11184921 

Luo, X., Hong, T., & Tang, Y.-H. (2020). Modeling Thermal Interactions between Buildings in an 
Urban Context. Energies, 13(9), 2382. https://doi.org/10.3390/en13092382 

Mackey, C., Galanos, T., Norford, L., Roudsari, M. S., & Architects, P. (2017). Wind, Sun, Surface 
Temperature, and Heat Island: Critical Variables for High-Resolution Outdoor Thermal 
Comfort. 9. 

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. 
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 
Volume 1: Statistics, 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992 

Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex 
environments—Application of the RayMan model. International Journal of 
Biometeorology, 51(4), 323–334. 

Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. 
Theoretical and Applied Climatology, 38(1), 43–49. 

Metzger, K. B., Ito, K., & Matte, T. D. (2010). Summer heat and mortality in New York City: How 
hot is too hot? Environmental Health Perspectives, 118(1), 80–86. 

Miller, C., Thomas, D., Kämpf, J., & Schlueter, A. (2015). Long wave radiation exchange for 
urban scale modelling within a co-simulation environment. Proceedings of International 
Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to 
Urban Scale, CONF, 871–876. 

Nice, K. A., Coutts, A. M., & Tapper, N. J. (2018). Development of the VTUF-3D v1.0 urban 
micro-climate model to support assessment of urban vegetation influences on human 
thermal comfort. Urban Climate, 24, 1052–1076. 
https://doi.org/10.1016/j.uclim.2017.12.008 

Nikolopoulou et al. - 1999—Improvements to the Globe Thermometer for Outdoor .pdf. (n.d.). 
Perini, K., Chokhachian, A., Dong, S., & Auer, T. (2017). Modeling and simulating urban outdoor 

comfort: Coupling ENVI-Met and TRNSYS by grasshopper. Energy and Buildings, 152, 
373–384. https://doi.org/10.1016/j.enbuild.2017.07.061 

Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar Energy, 
45(1), 1–7. https://doi.org/10.1016/0038-092X(90)90060-P 

Sailor, D. J. (2008). A green roof model for building energy simulation programs. Energy and 
Buildings, 40(8), 1466–1478. 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance 
based sensitivity analysis of model output. Design and estimator for the total sensitivity 

29 

https://doi.org/10.1016/0038-092X(90)90060-P
https://doi.org/10.1016/j.enbuild.2017.07.061
https://doi.org/10.1016/j.uclim.2017.12.008
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.3390/en13092382
https://doi.org/10.3390/su11184921


  

  
 

 
    

     
 

     
  

 
   

 
  

 
    

 
    

  
 

   
 

    
     

 
     

   
 

 

index. Computer Physics Communications, 181(2), 259–270. 
https://doi.org/10.1016/j.cpc.2009.09.018 

Santamouris, M., Gaitani, N., Spanou, A., Saliari, M., Giannopoulou, K., Vasilakopoulou, K., & 
Kardomateas, T. (2012). Using cool paving materials to improve microclimate of urban 
areas – Design realization and results of the flisvos project. Building and Environment, 53, 
128–136. https://doi.org/10.1016/j.buildenv.2012.01.022 

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte 
Carlo estimates. Mathematics and Computers in Simulation, 55(1), 271–280. 
https://doi.org/10.1016/S0378-4754(00)00270-6 

Solemma LLC. (2019). ClimateStudio (Version 1) [Computer software]. Solemma LLC. 
http://solemma.com 

Subramaniam, S. (2017). Daylighting Simulations with Radiance using Matrix-based Methods. 
Lawrence Berke-Ley National Laboratory. 

Talbot, C., Bou-Zeid, E., & Smith, J. (2012). Nested mesoscale large-eddy simulations with WRF: 
Performance in real test cases. Journal of Hydrometeorology, 13(5), 1421–1441. 

Taleghani, M. (2018). The impact of increasing urban surface albedo on outdoor summer thermal 
comfort within a university campus. Urban Climate, 24, 175–184. 
https://doi.org/10.1016/j.uclim.2018.03.001 

Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18(4), 267–276. 
https://doi.org/10.1007/BF02289263 

Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the 
mean radiant temperature in an outdoor urban setting. International Journal of 
Climatology: A Journal of the Royal Meteorological Society, 27(14), 1983–1993. 

Yang, X., & Li, Y. (2013). Development of a Three-Dimensional Urban Energy Model for 
Predicting and Understanding Surface Temperature Distribution. Boundary-Layer 
Meteorology, 149(2), 303–321. https://doi.org/10.1007/s10546-013-9842-x 

30 

https://doi.org/10.1007/s10546-013-9842-x
https://doi.org/10.1007/BF02289263
https://doi.org/10.1016/j.uclim.2018.03.001
http://solemma.com
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/j.buildenv.2012.01.022
https://doi.org/10.1016/j.cpc.2009.09.018

	Structure Bookmarks
	Abstract 
	Keywords 
	Introduction 
	Methodology 
	Results 
	Discussion 
	Conclusion 
	Acknowledgments 
	Nomenclature 
	References 




Accessibility Report


		Filename: 

		CU_YR4_DOGAN-SAMARANAYAKE_FINAL_SUSTAINABLE-AND-HEALTHY-COMMUNITIES.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found no problems in this document.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


